
A Framework of Efficient Storage Management for Distributed
Storage System

Myat Pwint Phyu
University of Computer Studies, Yangon

myatpwint.ucsy@gmail.com

Abstract

 As storage systems grow larger and more
complex, the traditional block-based file systems
cannot satisfy the large workload. More recent
distributed file systems have adopted
architectures based on object-based storage.
This paper presents a framework of efficient
storage management for distributed storage
system. In object storage side which manage disk
block allocation internally by object-based
storage devices (OSDs), low-level storage tasks
and data distribution must be managed, and in
metadata server side, we will manage how to
scale the metadata. Due to the high space
efficiency and fast query response, we will utilize
bloom-filter based approach to manage
metadata and add semantic-based scheme to
narrow the managed workload. Then we will
optimize the data distribution in OSDs using
chord mechanism.

1. Introduction

 Today’s file systems are not well suited to the
long-term storage of massive amounts of
unstructured data. File-based storage provides
only very basic metadata, limiting management
capabilities. Object-based storage is designed to
overcome these limitations. Object-based storage
offers an innovative approach to storing and
managing vast amounts of unstructured data,
from medical images to e-mail. Object-based
storage allows access to data by means of a
unique identifier that helps avoid the need to
know the specific location of a data object. Data
can be stored with a much richer set of metadata
in an object-based model than in a file-based
model. Information stored with the object can

include the application of retention and deletion
policies.
 The most familiar storage system
implementation is block storage, wherein blocks
of data are sent to the storage system from the
host over an interface, and the identity of the data
is based upon the volume and the logical block
address. File-based storage systems are really
remote file systems, where a storage system
stores data as files. In reality, file server turns it
into block storage.
 Object-based storage systems take a new
approach to storing data. The file data is stored
as an object with the application that stores and
retrieves data defining objects with object-based
storage. This creates new capabilities in dealing
with objects that can be exploited by applications
and management software. By dealing with
objects and not the specific physical placement
requirements of block storage systems, the
object-based storage system should have some
self-management capabilities regarding data
placement and access, relieving storage
administrators from that task.
 The metadata kept about objects is really the
key to enabling new capabilities for object-based
storage systems. The content of that metadata is
both information that the storage system adds,
such as size, date, access, etc., as well as
information that the application includes for use
by applications. The metadata server cluster in a
system should efficiently maintain file system
directory and permission semantics for a variety
of workloads.
 The role of metadata management is
challenging. As our knowledge, bloom filter is a
fast and space-efficient data structure to
represent a set. Due to this features, we will also
utilized bloom-filter based approach together

with a semantic filter to manage metadata in this
system. On the other hand, object placement is
also an importance issue in Object-based Storage
System. Data location can be easily implemented
on top of Chord by associating a key with each
data item, and storing the key/data item pair at
the node to which the key maps. So, we will use
the chord mechanism for data distribution in
OSDs.
 The rest of this paper is organized as follows.
Section 2 shows the related works of the system.
Section 3 explains some theory backgrounds and
Section 4 introduces the proposed system. Then
we conclude the paper with future work in
Section 5.

2. Related Work

 Typical algorithms for decentralized data
distribution work best in a system that is fully
built before it first used; adding or removing
components results in either extensive
reorganization of data or load imbalance in the
system. Large scale persistent storage systems
such as Farsite [1] and OceanStore [5] provide
more file system-like semantics. Objects placed
in the file system are guaranteed, within some
probability of failure, to remain in the file system
until they are explicitly removed. The
inefficiencies that are introduced by the peer-to-
peer and wide area storage systems address
security, reliability in the face of highly unstable
nodes, and client mobility (among other things).
However, these features introduce far too much
overhead for a tightly coupled mass object
storage system. RUSH [3] (Replication Under
Scalable Hashing) maps replicated objects to a
scalable collection of storage servers or disks. It
guarantees that replicas of a particular object are
not placed on the same server, and allows servers
to have different “weights,” distributing more
objects to servers with higher weights. The
algorithm is very fast, and scales with the
number of server groups added to the system.
Because there is no central directory, clients can
compute data locations in parallel, allowing
thousands of clients to access objects on
thousands of servers simultaneously. CRUSH [7]

(Controlled Replication under Scalable Hashing),
most closely resembles the RUSH. A number of
issues make RUSH an insufficient solution in
practice. CRUSH fully generalizes the useful
elements of RUSHP and RUSHT while resolving
previously unaddressed reliability and replication
issues, and offering improved performance and
flexibility. CRUSH a pseudo-random data
distribution algorithm that efficiently and
robustly distributes object replicas across a
heterogeneous, structured storage cluster. The
primitive rule structure currently used by
CRUSH is just complex enough to support the
data distribution.
 In GoogleFS and HDFS [12], there is no
metadata partition. Several copy of namespace
metadata is maintained in multiple metadata
servers to ensure reliability. Metadata is kept in
memory to improve the performance. Weak
scalability at both scale and performance. In
static sub-tree partition like AFS, partition is
based on hash value of sub-tree or static
assignment and don’t support sub-tree migration.
In dynamic partition such as ceph [8] or farsite
[1], partition is based on hash value of sub-tree
or dynamic assignment and support sub-tree
migration based on workload on each metadata
server. The namespace of Sub-dir partition like
GPFS [6] and giga+ [4] is partitioned by fixed
size of directory partition. Directory partition
number increased with the extension of
directory. Multiple directory partitions of the
same dir can process requests in parallel. As for
very large directory, large directory partition has
low memory utilization and low efficiency of
location. In static file partition such as xFS [13],
metadata partition based on file’s name hash.
Relation between file and server is fixed, and is
not support scalable. Files distributed on MDS
with no skew. On the other hand, file does not
map to server directly, additional information is
needed in dynamic file partition such as HBA
[10] and GHBA [2]. Relation between file and
server can change.

3. Theory Background

 In this section, we will discuss chord
mechanism and bloom filter as theory
background.

3.1. Chord

 Chord provides support for just one
operation: given a key, it maps the key onto a
node. Data location can be easily implemented
on top of Chord by associating a key with each
data item, and storing the key/data item pair at
the node to which the key maps. Chord adapts
efficiently as nodes join and leave the system,
and can answer queries even if the system is
continuously changing. Chord provides fast
distributed computation of a hash function
mapping keys to nodes responsible for them. It
uses consistent hashing [11], which has several
good properties. With high probability the hash
function balances load. Also with high
probability, when an node joins (or leaves)

the network, only an fraction of the

keys are moved to a different location - this is
clearly the minimum necessary to maintain a
balanced load. Chord improves the scalability of
consistent hashing by avoiding the requirement
that every node know about every other node.

3.2. Bloom Filter

 Bloom Filters (BFs) provide space-efficient
storage of sets at the cost of a probability of false
positives on membership queries. A Bloom filter
is traditionally implemented by a single array of
M bits, where M is the filter size. On filter
creation all bits are reset to zeroes. A filter is also
parameterized by a constant that defines the
number of hash functions used to activate and
test bits on the filter. Each hash function should
output one index in M. When inserting an
element on the filter, the bits in the indexes

 are set.

 Bloom Filter [9] is a bit array of M bits for
representing a set of

items. All bits in the array are initially set to 0.
Then, a Bloom filter uses independent hash

functions to map the set to the bit

address space . For each item , the

bits of are set to 1. To check whether an

item is a member of , we need to check
whether all are set to 1. If not, is not in

the set . If so, is regarded as a member of
 with a false positive probability, which

suggests that set contains an item although
it in fact does not. Generally, the false positive is
acceptable if it is sufficiently small. The time
complexity of a standard bloom filter is a fixed
constant , completely independent of the
number of items in the set. Use of Bloom filters
have a strong space advantage over other data
structures for representing sets, such as self-
balancing binary search trees, tries, hash tables
or simple arrays or linked listed of the entries.
Most of these require storing at least the data
item themselves, which can require anywhere
from a small number of bits to arbitrary number
of bits.

4. The Proposed System

 In object-based storage system, a client
contacts an MDS first to acquire access
permission and obtain metadata of the desired
file. Then the client directly accesses the
respective data store to get the content. In this
section, we present the mechanisms for MDS
management and data distribution in OSDs.
Figure 1 shows the architecture of object-based
storage system.

thN
)1(NO

k

e k
)(),...,(),(21 eheheh k

},...,,{ 21 naaaS =
n

q
},...,{ 1 qhh
],...,1[M a

)(ahi
a S

)(ahi a
S a

S
S a

)(kO

Figure 1. Architecture of object-based storage

system

4.1. Metadata Server Management

 We present an approach called two-stage
bloom filter to gain efficient metadata
management and fast metadata lookup. We use
bloom filter array (BFA) on each Metadata
Server (MDS) to manage metadata of multiple
MDSs. A client randomly chooses an MDS to
perform its request. In each MDS, it is organized
including Least Recently Used-BF (LRU-BF) for
providing access locality and semantic-based BF
(SBF) to map the workloads to the same concept
space. For SBF, Latent Semantic Indexing (LSI)
is used to generate semantically correlated
groups because of its high efficiency and easy
implementation.
 Figure 2 shows the structure of the two-stage
BF scheme. When a request comes, LRU-BF of
the selected MDS starts firstly to return the hit/
miss response. The LRU-BF array maintains all
the files cached in LRU list of the corresponding
MDS. The BFA returns a hit when exactly one
filter gives a positive response. A miss takes
place when zero hit is found in the array. If a
miss takes place at LRU-BFA, the MDS
calculates grouping scheme to determine the
specific group. Then the request is forwarded to

semantic-based BF in which the probability of
hit is high because it maintains the grouped
information of all MDSs. If a lookup fail, the
request is multicast among all MDSs which store
the information of files by grouping. In this
scheme, we will use MD5 approach for hashing
because of its available fast implementation.

Figure 2. Structure of two-stage BF

4.2. Data Distribution Management

 Object-based storage devices (OSDs) manage
disk block allocation internally, exposing an
interface that allows others to read and write to
variably-sized, named objects. In such a system,
each file’s data is typically striped across a
relatively small number of named objects

Metadata Storage

MDS

File I/O

Metadata operation Client
input

OSD

Home
MDS

Multicast
MDSs

miss

Hashing

miss

hit

File
name

Hashing

LRU-BF1

LRU-BF2

LRU-BFn

LRU-BFi

hit

SBF1

SBF2

SBFn

.

.

distributed throughout the storage cluster.
Objects are replicated across multiple devices.

Figure 3. Block diagram of object placement

mechanism

 Firstly, each object’s placement group (PG) is
determined by a hash of the object name , the
desired level of replication and a bit mask

that controls the total number of placement
groups in the system. That is,

, where & is a bit-

wise AND and the mask
constraining the number of PGs by a power of
two. This is derived from ceph [8] and can be
seen in figure 3. Then, the chord mechanism is
used to distributed data objects.

4.3. Properties of the proposed system

 To the best of our knowledge, the proposed
semantic-based bloom filter is the simple one.
There are some properties that are offered by the
proposed system.
1. We present a scalable metadata management

for distributed storage system. The proposed
two-stage BF scheme can store large amount
of metadata and support fast and accurate
lookup with MDSs.

2. We use LRU list of accessed file so we can
get the temporal locality of the system.

3. We apply the grouping scheme to collect the
spatial locality of the system and to reduce
the workloads for the sake of memory
efficiency.

4. The client’s request can start from any MDS
and as a result the system can offer the
balancing of the request workload.

 Moreover, using chord mechanism to take the
placement of objects also optimizes the data
distribution. By applying the consistent hashing
approach, the OSDs can maintain load balancing
well.

5. Conclusions and Future Work

 In this paper, we present the efficient way to
assist the storage management of distributed
storage system. The two-stage BF approach
which includes grouping scheme is introduced to
improve temporal and spatial locality and fast
lookup for metadata management. Later, we
intend to get dynamic balancing when a new
MDS is added. On the other hand, data
distribution in object-based storage will be
implemented. We will evaluate our system with
various kinds of workloads and showed that the
system can provide high throughput and high
storage utilization for object-based storage
system. At this time, we cannot demonstrate the
system with experimental results. Our system is
still in progress and we will present the system
with rich experimental results at future.

References

[1] A. Adya, W. J. Bolosky, M. Castro, R. Chaiken,

G. Cermak, J. R. Douceur, J. Howell, J. R. Lorch,
M. Theimer, and R. Wattenhofer, “FARSITE:
Federated, available, and reliable storage for an
incompletely trusted environment”, In
Proceedings of the 5th Symposium on Operating
Systems Design and Implementation (OSDI),
Boston, MA, Dec. 2002. USENIX.

[2] Y. Hua, Y. Zhu, H. Jiang, D. Feng, L. Tian,
“Scalable and Adaptive Metadata Management in
Ultra Large-scale File Systems”, University of
Nebraska–Lincoln, Computer Science and
Engineering, Technical Report TR-UNL-CSE-
2007-0025, Issued Nov. 20, 2007.

[3] R. J. Honicky and E. Miller, “Replication Under
Scalable Hashing: A family of algorithms for
scalable decentralized data distribution”, 18th
International Parallel and Distributed Processing

o
r

m

)&)(,(mohashrpgid =
12 -= km

Symposium (IPDPS 2004), April 2004, Santa Fe,
New Mexico.

[4] S. Patil, G. Gibson, S. Lang, M. Polte, “GIGA+:
Scalable Directories for Shared File Systems”, In
Proceedings of the 2nd International Petascale
Data Storage Workshop (PDSW 2007).

[5] S. Rhea, P. Eaton, D. Geels, H. Weatherspoon, B.
Zhao, and J. Kubiatowicz, “Pond: the OceanStore
prototype”, In Proceedings of the 2003
Conference on File and Storage Technologies
(FAST), Mar. 2003, pp. 1–14.

[6] F. Schmuck, R. Haskin, “GPFS: A Shared-Disk
File System for Large Computing Clusters”,
FAST'02 - 1st USENIX Conference on File and
Storage Technologies, January 2002.

[7] S. A. Weil, S. A. Brandt, E. L. Miller, and C.
Maltzahn, “CRUSH: Controlled, scalable,
decentralized placement of replicated data”, In
Proceedings of the 2006 ACM/IEEE Conference
on Supercomputing (SC ’06), Tampa, FL,
November 2006. ACM.

[8] S. A.Weil, S. A. Brandt, E. L.Miller, D. D. E.
Long, and C. Maltzahn. “Ceph: A scalable, high-
performance distributed file system”, In
Proceedings of the 7th Symposium on Operating
Systems Design and Implementation (OSDI),
Seattle, WA, November 2006. USENIX.

[9] B. Xiao, Y. Hau, “Using Parallel Bloom Filters
for Multiattribute Representation on Network
Services”, IEEE Transactions on Parallel and
Distributed Systems, Vol 21, No. 1, Jan 2010.

[10] Y. Zhu, H. Jiang, J. Wang, F. Xian, “ HBA:
Distributed Metadata Management for Large
Cluster-based Storage Systems”, IEEE
Transactions on Parallel and Distributed Systems,
Vol 19, No. 41, April 2008.

[11] http://en.wikipedia.org/wiki/Consistent_hashing
[12] http://wiki.apache.org/hadoop/HDFS
[13] http://en.wikipedia.org/wiki/XFS

